/* Multi-Candidates Latin Hypercube Search (Multi-dimensional Grid Search) */ new; cls; xmin={0,0,0}; xmax={10,10,10}; nn=2; /* more than 10 in normal version of GAUSS required */ nsteps=2; /* this is not enough */ p=0.2; fn f(x)=sin(x[1])-cos(x[2])-x[3]; print mLHSsearch(xmin,xmax,nn,nsteps,p,&f); /* ** LHSCH02m.txt - Multi-Candidates Latin Hypercube Sampling Search(Multi-dimensional Grid Search). ** Stochastic Search. ** (C) Copyright 2005 Yosuke Amijima. All Rights Reserved. ** ** Purpose: Gets maximum values of function f(x) between xmin and xmax initially. ** ** Format: xstarstar=mLHSsearch(xmin,xmax,nn,nsteps,p,&f); ** ** Input: xmin vector, nn x 1 vector of initial minimum values to search ** ** xmax vector, nn x 1 vector of initial maximum values to search ** ** nn scalar, number of segments ** ** nstep scalar, number of steps to focus in ** ** p scalar, focus ratio in each step ** ** &f pointer to a procedure of objective function f(x) to be maximized ** ** ** Output: xstarstar vector, nn x 1 vector of maximum values ** ** Notice: It takes lots of memory to run. Light version of GAUSS will not work in most cases. ** Partition parameter nn should be large enogh. Partial use of this algorithm would ** be very powerful at the initial stages. ** ** If you have some trouble to run, start over GAUSS again. */ proc mLHSsearch(xmin,xmax,nn,nsteps,p,&f); local dim,y,range0,range,step,zmax0,zmax,xmin0,zmaxj,xstar,i,j,k,index,x,z,d,U,c,xstarstar; local f:proc; /* indexing */ dim=rows(xmin); y=dimindex(nn,dim); /* initial step settings */ zmax0=-1e256; xmin0=xmin; range0=(xmax-xmin)/nn; /* main */ d=1/(nn); c=1; do while c<=nn^dim; xmin=xmin0'+(y[c,.]-1).*range0'; xmin=xmin'; range=range0; step=range/nn; zmax=f(xmin); xstar=xmin; k=1; do while k<=nsteps; print; j=1; do while j<=nn^dim; /* LHS before scaling by parameter vector 'step' */ U=(d*y-d*(y-1)).*rndu(nn^dim,dim)+d*(y-1); /* [ location ] + [ U(0,1) inside each cube] */ x=xmin'+(y[j,.]-1).*step'+U.*step'; z=zeros((nn+1)^dim,1); /* calculation f(x) in each hypercube */ z=zeros(nn^dim,1); i=1; do while i<=nn^dim; z[i]=f(x[i,.]'); i=i+1; endo; zmaxj=maxc(z); /* uptate xstar if larger solution zmaxj is found */ if zmax