/* Neville Interpolation */ /* Data from Holton(2003)"Value-at-Risk" */ new; cls; let data[10,2]= 1.1 2.14 1.4 2.60 2.5 1.15 2.7 1.19 3.2 1.88 3.6 1.55 4.1 2.65 4.3 3.80 4.5 4.46 4.9 6.35 ; x=data[.,1]; y=data[.,2]; points=9; /* # of points between x[k] and x[k+1] */ call nevilleinterp(y,x,points); proc nevilleinterp(y,x,points); local z,n,xx,yy,x1,i; /* sort them out in terms of x */ z=x~y; z=sortc(z,1); x=z[.,1]; y=z[.,2]; n=rows(x); /* graph */ xx=zeros((points+1)*(n-1)+1,1); yy=zeros((points+1)*(n-1)+1,1); i=1; do while i<=n-1; x1=seqa(x[i],(x[i+1]-x[i])/(points+1),points+1); xx[(i-1)*(points+1)+1:i*(points+1)]=x1; i=i+1; endo; xx[rows(xx)]=x[n]; i=1; do while i<=rows(yy); yy[i]=neville(y,x,xx[i]); i=i+1; endo; library pgraph; graphset; pqgwin auto; begwind; window(1,1,0); scale(-0.05*(maxc(x)-minc(x))+minc(x)|maxc(x)+0.05*(maxc(x)-minc(x)),-0.25*(maxc(y)-minc(y))+minc(y)|maxc(y)+0.25*(maxc(y)-minc(y))); setwind(1); title("Neville Interpolation"); xy(xx,yy); setwind(1); _plctrl=-1; _pcolor=15; _psymsiz=1; xy(x,y); endwind; retp(xx~yy); endp; proc neville(y,x,x0); local z,n,Q,i,j; /* sort them out in terms of x */ z=x~y; z=sortc(z,1); x=z[.,1]; y=z[.,2]; n=rows(x); /* calculation of Q */ Q=y; j=1; do while j<=n-1; i=1; do while i<=n-j; Q[i]=((x[i+j]-x0)*Q[i]-(x[i]-x0)*Q[i+1])/(x[i+j]-x[i]); i=i+1; endo; j=j+1; endo; retp(Q[1]); endp;