new; cls; /* Stochastic Binomial Lookback Call & Put Options */ S0=50; K=50; r=0.10; sig=0.40; T=5/12; nn=500; times=5000; print/lz " nn=" nn; print/lz " times=" times; print "C=" PBlookbackC(S0,r,sig,T,nn,times); print "P=" PBlookbackP(S0,r,sig,T,nn,times); print; print "Fixed Strike version:"; print "C=" PBlookbackCf(S0,K,r,sig,T,nn,times); print "P=" PBlookbackPf(S0,K,r,sig,T,nn,times); /* ** pblookback.txt - Stochastic Binomial Lookback call & Put Options. ** (C) Copyright 2005 Yosuke Amijima. All Rights Reserved. ** ** Purpose: Calculates Lookback option prices by stochastic binomial simulation. ** ** Format: C=PBlookbackC(S0,r,sig,T,nn,times); ** P=PBlookbackP(S0,r,sig,T,nn,times); ** ** Input: S0 scalar, initial value ** ** r scalar, risk-free interest rate ** ** sig scalar, volatility ** ** T scalar, maturity ** ** nn scalar, number of time steps ** ** times scalar, number of simulations ** ** ** Output: C scalar, call option price ** P scalar, put option price ** */ proc PBlookbackC(S0,r,sig,T,nn,times); local OV,i,S,C; OV=zeros(times,1); i=1; do while i<=times; S=pbsampler(S0,r,sig,T,nn); OV[i]=S[nn+1]-minc(S[2:nn+1]); i=i+1; endo; C=exp(-r*T)*meanc(maxc((OV~zeros(times,1))')); retp(C); endp; proc PBlookbackP(S0,r,sig,T,nn,times); local OV,i,S,P; OV=zeros(times,1); i=1; do while i<=times; S=pbsampler(S0,r,sig,T,nn); OV[i]=maxc(S[2:nn+1])-S[nn+1]; i=i+1; endo; P=exp(-r*T)*meanc(maxc((OV~zeros(times,1))')); retp(P); endp; /* ** pblookback.txt - Fixed Strike version of Stochastic Binomial Lookback call & Put Options. ** (C) Copyright 2005 Yosuke Amijima. All Rights Reserved. ** ** Purpose: Calculates Lookback option prices by stochastic binomial simulation. ** ** Format: C=PBlookbackCf(S0,K,r,sig,T,nn,times); ** P=PBlookbackPf(S0,K,r,sig,T,nn,times); ** ** Input: S0 scalar, initial value ** ** K scalar, strike price ** ** r scalar, risk-free interest rate ** ** sig scalar, volatility ** ** T scalar, maturity ** ** nn scalar, number of time steps ** ** times scalar, number of simulations ** ** ** Output: C scalar, call option price ** P scalar, put option price ** */ proc PBlookbackCf(S0,K,r,sig,T,nn,times); local OV,i,S,C; OV=zeros(times,1); i=1; do while i<=times; S=pbsampler(S0,r,sig,T,nn); OV[i]=maxc(S[2:nn+1])-K; i=i+1; endo; C=exp(-r*T)*meanc(maxc((OV~zeros(times,1))')); retp(C); endp; proc PBlookbackPf(S0,K,r,sig,T,nn,times); local OV,i,S,P; OV=zeros(times,1); i=1; do while i<=times; S=pbsampler(S0,r,sig,T,nn); OV[i]=K-minc(S[2:nn+1]); i=i+1; endo; P=exp(-r*T)*meanc(maxc((OV~zeros(times,1))')); retp(P); endp; /* ** pbsampler.txt - Stochastic Binomial Path Sampler. ** (C) Copyright 2005 Yosuke Amijima. All Rights Reserved. ** ** Purpose: Gets a stochastic path on binomial tree. ** ** Format: S=pbsampler(S0,sig,T,nn) ** ** Input: S0 scalar, initial value ** ** r scalar, risk-free interest rate ** ** sig scalar, volatility ** ** T scalar, maturity ** ** nn scalar, number of time steps ** ** ** Output: S vector, (nn+1) x 1 of resulting values including S0 ** ** Notice: This procedure uses 'pbisampler' inside. ** */ proc pbsampler(S0,r,sig,T,nn); local delt,a,u,d,p,S; delt=T/nn; a=exp(r*delt); u=exp(sig*sqrt(delt)); d=1/u; p=(a-d)/(u-d); S=pbisampler(p,nn); S=S-1*(S.==0); S=S0*u^cumsumc(S); S=S0|S; retp(S); endp; /* ** pbisampler.txt - Stochastic Binomial 0-1 Sampler. ** (C) Copyright 2005 Yosuke Amijima. All Rights Reserved. ** ** Purpose: Gets stochastic binomial 0-1 index numbers in a very easy way. ** ** Format: x=pbisampler(p,nr); ** ** Input: p scalar, probability(for 1) ** ** nr scalar, number of rows ** ** ** Output: x vector, nr x 1 of resulting 0-1 index vector ** */ proc pbisampler(p,nr); local x; x=rndu(nr,1); x=(x.<=p); retp(x); endp;